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Four-wave mixing instabilities in photonic-crystal and tapered fibers

F. Biancalana, D. V. Skryabin, and P. St. J. Russell
Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom

~Received 9 May 2003; published 13 October 2003!

Four-wave mixing instabilities are theoretically studied for continuous wave propagation in ultrasmall core
photonic-crystal and tapered fibers. The waveguide, or geometrical, contribution to the overall dispersion of
these structures is much stronger than in conventional fibers. This leads to the appearance of unstable fre-
quency bands that are qualitatively and quantitatively different from those seen in conventional fibers. The
four-wave mixing theory developed here is based on the full wave equation, which allows rigorous study of the
unstable bands even when the detunings are of the order of the pump frequency itself. Solutions obtained using
the generalized nonlinear Schro¨dinger equation, which is an approximate version of the full wave equation,
reveal that it suffers from several deficiencies when used to describe four-wave mixing processes.
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I. INTRODUCTION

Four-wave mixing~FWM! is a fundamental nonlinear op
tical process, in which a pair of Stokes and anti-Stokes p
tons is generated from two pump photons through the th
order nonlinear susceptibility. FWM can be observed in
wide range of materials, including optical fibers@1#. The ex-
istence and efficiency of frequency conversion by FWM c
cially depend on the so-called phase-matching conditi
@1#, which are in turn determined by the dispersive proper
of the system. Modulational instability~MI ! of continuous
wave ~CW! radiation is a kind of FWM instability and is
well known in conventional optical fibers, where the disp
sion profile is well approximated by a group velocity dispe
sion ~GVD! that is either independent of, or linearly depe
dent on, frequency@1#.

Recent advances in the fabrication of photonic-crysta
bers~PCFs! @2–5# have made possible the production of
bers with tiny core areas and dispersion characteristics
are strongly modified compared to conventional fibres. A
consequence, the FWM phase-matching conditions are c
pletely different from those seen in conventional fibers.
additional advantage of small-core PCFs is that strong n
linear interactions occur at relatively low peak powers a
over short propagation distances. For these reasons, P
offer the opportunity to develop a new family of paramet
amplifiers and oscillators.

The dispersion characteristics of tapered fibers~TFs!, see,
e.g., Ref.@6#, which are made by heating and stretching co
ventional fibers, are very similar to those in small-core PC
A typical TF is a transversely homogeneous strand of si
glass with diameter around 1 or 2mm. The GVD profiles of
PCFs and TFs are similar because, in a typical index-guid
PCF, most of the light is guided in a tiny silica core su
rounded by a periodic structure of large air-filled holes se
rated by thin silica membranes, a structure that has str
similarities to a TF. A disadvantage of TFs compared to PC
is that they are fragile and, therefore, are practical only
short lengths (,1 m).

Several recent papers on FWM in PCFs@7–10# have fo-
cused their theories on cases when FWM instabilities ex
bands of gain analogous to the MI bands seen in conv
1063-651X/2003/68~4!/046603~8!/$20.00 68 0466
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tional fibers@1#. The results in these papers can essentially
described within the framework of the idealized nonline
Schrödinger ~NLS! equation, which means that they do n
contain any new features specific to the ultrasmall core fib
studied here. The main aim of this work is to reveal the
features. In order to achieve this in a rigorous manner
develop a theory of FWM which goes beyond the slow
varying envelope approximation of the NLS equation a
deals directly with the wave equation. Our analysis reve
the existence of different instability bands and shows
possibility of backward wave excitation. A detailed compa
son with the results obtained using a generalized version
the nonlinear Schro¨dinger equation reveals several deficie
cies of the latter.

II. FWM INSTABILITIES BEYOND SLOWLY VARYING
APPROXIMATION

We start our analysis with the nonlinear wave equat
derived directly from Maxwell’s equations:

¹W 2EW 2¹W ~¹W •EW !2
1

c2
] t

2~EW 2PW L2PW NL!50W , ~1!

where¹W 5 iW]x1 jW]y1kW]z . The linear polarization is defined
as

PW L5E
2`

`

x (1)~ t2t8,x,y!EW ~ t8!dt8, ~2!

whereEW is the electric field, andx (1) is the linear suscepti-
bility of the dielectric medium~in our case silica glass!,
which depends on time and the transverse coordinatesx,y.
PW NL includes both Kerr and Raman terms:

PW NL5
3

4
x3F ~12u!uEW u21uE

2`

1`

g~ t2t8!uEW ~ t8!u2dt8GEW ,

~3!

whereu.0.18 measures the relative strength of the inst
taneous and noninstantaneous nonlinearities@1# and
©2003 The American Physical Society03-1
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g~ t !5
t1

21t2
2

t1t2
2 e2t/t2sin~ t/t1)Q~ t !. ~4!

Here t1.12.2 fs is the inverse of the phonon frequen
taken relative to the pump frequency andt2.32 fs is the
phonon lifetime@1#. Q(t) is the Heaviside function andx3
.10219 m2/W is the nonlinear susceptibility.

Our next step is to reduce Eq.~1! to an equation inz and
t only. In order to achieve this we first transform Eq.~1! from
the time to the frequency domain, using Fourier transformF,
and then separate transverse and longitudinal degrees of
dom through the approximate factorizationFEW (x,y,z,t)

5EŴ (x,y,z,v).FW (x,y,v)Ẽ(z,v). FW is an eigenmode of the
linear waveguide having propagation constantk(v) wherev
is the optical frequency.k(v) incorporates both material an
waveguide contributions to the overall fiber dispersion, an
is calculated by solving the eigenvalue problem for the tim
andz-independent cases~see, e.g., Ref.@11#!.

It can be shown that the dynamics of the inverse Fou
transformF 21Ẽ5Ē(z,t) of the amplitudeẼ are governed
by the equation

c2]z
2Ē2] t

2Ē5] t
2F E

2`

1`

xe f f
(1)~ t2t8!Ē~ t8!dt8

1~12u!x̄ (3)uĒu2Ē1ux̄ (3)Ē~ t !

3E
2`

1`

g~ t2t8!uĒ~ t8!u2dt8G , ~5!

wherexe f f
(1) is the effective linear susceptibility of the fibre

with its Fourier transform,Fxe f f
(1)5x̂e f f

(1)(v), being given by

x̂e f f
(1)~v!5

k2c2

v2 21 ~6!

and x̄353Smodx3 /(4Se f f). Here Smod5* uFW u2dS is the
modal area andSe f f5Smod

2 /(* uFW u4dS). In what follows we
make the approximation thatSmod.Se f f.pd2/4, whered is
the core diameter. We also assume thatx̂e f f

(1)(v) is real, i.e.,
we disregard any linear loss. For the sake of brevity, fr
now on we will write x̂(v) instead ofx̂e f f

(1)(v).
The calculated frequency dependence of the GVD,b2

5]v
2 k(v), for a TF with d51 mm is plotted in Fig. 1 to-

gether with the experimentally measured dispersion pro
of a PCF with a 1.2-mm core surrounded by air holes o
approximately the same size~but separated by glass mem
branes 0.13mm thick!. In conventional telecom fibers th
diameter of the guiding core is.9 mm. Thus the ratio of
core diameter to wavelength in the fibers considered her
much less than in conventional ones. For this reason th
fibers can be termed as both strongly guiding and hig
nonlinear.

The GVD profiles for TF and PCF shown in Fig. 1 a
very similar. There are two zero GVD points with a region
anomalous dispersion in between them.b35]v

3 k(v) is posi-
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tive at the right hand, i.e., high-frequency, zero GVD poi
An analog of this zero dispersion point, whereb250 and
b3.0, is well known in conventional fibers, where it occu
at v/(2p).229 THz~see Fig. 1 for an example of the GVD
profile of Corning SMF28 fiber!. In our fibers this point is
shifted far towards the blue side of the spectrum. A seco
zero dispersion point occurs close tov/(2p).235 THz,
where in additionb3,0. Thus the entire range of anomalou
dispersion is shifted significantly towards the blue side of
spectrum. Increasing the core diameter causes the zero G
points to shift towards smaller frequencies, when the disp
sion profiles become similar to those seen in conventio
fibers. Note that the coexistence of two zero GVD poin
within an experimentally relevant frequency range has a p
found effect on the FWM instabilities discussed below.

We now assume that the fiber is pumped by a CW sig

Ē5
1

ASmod

E0ei (zAk0
2
1K0

2
2v0t)1c.c., ~7!

whereE0 is a constant amplitude,Ak0
21K0

2 andv0 are, re-
spectively, the wave vector and the frequency of the pu
wave. k05k(v0) characterizes the linear, i.e., power ind
pendent, part of the wave vector, whileK0 is intensity de-
pendent. Expression~7! is a solution to Eq.~5! provided that

K0
252k0guE0u2, g5~v0

2x̄ (3)!/~2k0c2Smod!, ~8!

whereg is the standard parameter used to characterize
nonlinear properties of fibers@1#.

To explore the FWM gain, we perturb solution~7! with a
small complex signale:

Ē5
1

ASmod

@E01e~z,t !#ei (zAk0
2
1K0

2
2v0t)1c.c. ~9!

After substituting Eq.~9! into the governing equation~5! we
disregard all the terms nonlinear ine. We then takee in the
general and convenient form of a superposition of Stokes
anti-Stokes waves:

FIG. 1. GVD parameters as functions of frequency: for t
1.2-mm-core PCF~Optoelectronics group, Bath!, for the 1-mm ta-
pered fiber~TF!, and conventional fiber~Corning SMF28!.
3-2
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e~z,t !5E dd(
j

@uj
ASeik j z2 idt1uj

Se2 ik j* z1 idt# ~10!

and derive a linear equation for the vectorsjW j

5„uj
AS,(uj

S)* …T:

2k j
2S 1 0

0 1D jW j22k jAk0
21K0

2S 1 0

0 21D jW j

1S D1 aK1
2

aK2
2 D2

D jW j50. ~11!

Here a5(11ug̃2u), D65k6
2 2k0

21(11a)K6
2 2K0

2 ,

k6
2 5(v06d)2@11x̂(v06d)#, K6

2 5(v06d)2x̄ (3)uE0u2/

(c2Smod), andg̃(d) is the Fourier transform of the respon
function g(t):

g̃~d!5E
2`

1`

g~ t !exp~2 idt !dt5
t1

21t2
2

t2
21t1

2~11 idt2!2
.

~12!

k j are the roots of the fourth-order algebraic equation:

k42@4~k0
21K0

2!1D11D2#k2

12Ak0
21K0

2~D12D2!k1~D1D22a2K1
2 K2

2 !50.

~13!

As far as we know, all previous results on FWM in fibe
with nontrivial dispersion characteristics have relied on
slowly varying approximation inz and thereby resulted in
quadratic equation fork, see, e.g., Refs.@1,12–14#. As we
will discuss in more details in Sec. III, the two extra roo
can describe excitation of both forward and backward wav
Equation~13! also fully accounts for the dispersion profile
the fiber and it is valid practically for arbitrary values ofd.

Solution~7! becomes unstable if Eq.~13! has at least one
root with Im(k),0. Knowingk as a function ofv and solv-
ing Eq. ~13! numerically we can plot the dependencies of
four eigenvaluesk on any parameter. Since Eq.~13! requires
a knowledge of the functionk(v), we start considering the
example of a TF, for which this dependence is easy to
culate @11#. First, we fix the pump frequencyv0 at 2p
3250 THz, where the GVD is large and anomalous. Cor
sponding values of GVD andg are b2.253 ps2/km and
g50.165 W21 m21. Figure 2 shows thed dependence o
the imaginary and real parts of all four roots of Eq.~13!. Two
roots,k2 andk4, have negative imaginary parts and gener
instabilities.

Here and in what follows it is sufficient for us to plot on
values ofk for d.0. From Eq.~10!, it is clear that plots for
d.0 give us full information about both the Stokes and t
anti-Stokes waves. It is also obvious from Eq.~10! that any
instability leads to the same growth rate for the Stokes
anti-Stokes waves having the same indexj. What, however,
makes the intensities of the two waves physically differen
the ratio of thez-independent amplitudes:
04660
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Rj5
uuj

ASu

uuj
Su

, j 51,2,3,4, ~14!

which can be calculated from our linear theory. Coefficie
R2,4, corresponding to the pair of unstable eigenvalues fr
Fig. 2, are shown in Fig. 3 as functions of the detuningd ~see
Sec. III for more details!.

The left-most instability band shown in Fig. 2~b! has a
direct analog in the idealized NLS equation in the anomal
dispersion regime~see Sec. IV!. The far-detuned instability
peak, however, does not exist in the idealized NLS—it a
pears in our model due to modified fiber dispersion. T
peak is always narrow compared to the primary one. Figu
shows dependence of the detuning and the maximal valu
Im k2 on the pump frequency.

Taking dispersion profiles for the TFs with progressive
larger-core radii, i.e., approaching the limit of the conve
tional fibers, we have demonstrated that the secondary F
peak moves towards the larger values ofd. Reference@14# is
the only report known to us of the existence of similar se

FIG. 2. Imaginary~solid lines, see scale on the left vertical axe!
and normalized real~dashed lines, see scale on the right vertic
axes! parts of the roots of Eq.~13!. k(v) is taken for the TF with
d51 mm, see Fig. 1~b! for the corresponding GVD profile. Pum
frequency isv0 /(2p)5250 THz and pump powerE0

25200 W.

FIG. 3. d dependence of the ratios of the amplitudes of Sto
and anti-Stokes waves,R2,4, corresponding to the pair of unstab
eigenvalues from Figs. 2~b! and 2~d!. Values of parameters are th
same as Fig. 2. Note the difference in the scale between~a! and~b!.
3-3
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BIANCALANA, SKRYABIN, AND RUSSELL PHYSICAL REVIEW E 68, 046603 ~2003!
ondary peaks in fibers with flattened GVD. However, sma
core PCFs and TFs have GVD profiles which, in some
portant aspects, are different from the parabo
approximation forb2(v) used in Ref.@14# ~see Sec. IV for
discussion of these differences!.

If one neglects the Raman effect by puttingu50, then the
imaginary parts ofk3,4 are equal to zero and the instabili
associated withk4, disappears. An important feature of th
instabilities induced by the Raman effect is that their ex
tence does not depend on the sign ofb2. Indeed in Fig. 5 we
show plots of imaginary parts of all four eigenvalues for
TF when the pump frequency is taken atv0 /(2p)
5600 THz, i.e., deep inside the normal GVD regime. O
can see that the gain maxima of the existing instability
mains are atd.13 THz, which corresponds to the maximu
of the Raman gain.

III. STOKES VS ANTI-STOKES AND FORWARD
VS BACKWARD WAVES

Because the wave equation has a second-order deriv
in z it naturally includes backward waves. One can see fr

FIG. 4. ~a! Dependence of the position of the maximum of t
second FWM peak on the pump frequency.~b! Dependence of the
gain at the maximum of the second FWM peak on the pump
quency. Full lines are obtained using wave equation, see Eq.~13!,
and dotted lines are obtained using generalized NLS equation
Eq. ~16!. k(v) is taken for the TF withd51 mm, see Fig. 1~b! for
the corresponding GVD profile, and pump power isE0

25200 W.

FIG. 5. d dependence of the imaginary parts of the four roots
Eq. ~13! in the deep normal dispersion regime.k(v) is taken for the
TF with d51 mm, see Fig. 1~b! for the corresponding GVD pro
file. Pump frequencyv0 /(2p)5600 THz and pump powerE0

2

5200 W. Numbers correspond to the root indexj in Eq. ~13!.
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Fig. 2 that 0,Rek1,2/k0,1, which means, see Eqs.~10!,
that both Stokes and anti-Stokes waves excited by the
stable rootk2 are forward waves, i.e., they copropagate w
the pump wave. Contrary, looking at the Figs. 2~c,d!, one can
observe that Stokes and anti-Stokes waves correspondin
the rootk4 are, respectively, backward and forward wave
Rek4 /k0,22. The situation is opposite fork3 , Rek3 /k0
,2, but this root does not generate any unstable bands. T
one can conclude that the Stokes wave excited by the
stable rootk4 propagates backwards and the correspond
unstable anti-Stokes wave copropagates with the pump. N
that amplitude of the backward Stokes wave is predicted
be 106 times less than the amplitude of the forward an
Stokes wave, see Fig. 3~b!. What is important, however, tha
the strong forward anti-Stokes wave corresponding tok4 is
completely disregarded in the standard slowly varying
proximation, see Sec. IV, though its contribution to FW
process is of the same order of magnitude as the one as
ated withk2.

Analyzing dependence ofR2 on d @Fig. 3~a!#, one can see
that the first FWM peak corresponds to a wave with a Sto
component slightly stronger than the anti-Stokes one. In c
trast, the second peak generates a stronger anti-Stokes w
We have found that this situation is typical for a wide ran
of pump frequencies and pump powers. The dependenc
R2 ~corresponding to the maximum gain of the second FW
peak! on pump frequency is shown in Fig. 6.

IV. COMPARISON BETWEEN THE WAVE
AND GENERALIZED NLS EQUATIONS

A. Theory of FWM in generalized NLS equation

Different variants of the generalized NLS equation ha
been so far the most popular approach to the theoretical
numerical analyses of nonlinear effects in fibers with co
plex dispersion, including PCFs, see, e.g., Refs.@9,10,14–
16#. The rigorous analysis developed above allows eval
tion of the validity of the generalized NLS equation and,

-

ee

f

FIG. 6. Ratio of the amplitudes of Stokes and anti-Stokes wa
corresponding to the second FWM peak as function of the pu
frequency, for a pump powerE0

25200 W. Full lines are obtained
using wave equation, see Eq.~13!, and dotted lines are obtaine
using generalized NLSE, Eq.~16!.
3-4
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we will demonstrate below, uncovers some significant d
crepancies between the two approaches.

Assuming that Ē5(Smod)
21/2A(z,t)eik0z2 iv0t1c.c., t

5t2zb1, and using the procedure outlined in Ref.@17# we
derive an equation describing evolution of the envelo
function A:

i ~]z2 iD̂ !A52gF11
i

v
]tGAS ~12u!uAu2

1uE
2`

1`

g~t2t8!uA~z,t8!u2dt8D ,

D̂~ i ] t![ (
n52

N
bn

n!
~ i ]t!

n. ~15!

Here bn5]v
n k are the dispersion coefficients calculated

v5v0. The summation inD̂ should be taken up to an orde
N high enough to ensure that the dispersion profile is
equately approximated in the frequency domain under c
sideration. In our calculations we usedN520. Thet deriva-
tive in the right-hand side of Eq.~15! describes self-
steepening effects, i.e., the intensity dependence of the g
velocity, see, e.g., Refs.@1,12,17#.

FWM instabilities for different variations of Eq.~15! have
been previously analyzed by many authors, see, e.g., R
@12–14#. For this reason we focus only on details importa
to this work, i.e., those that are relevant either in the PCF
TF context or in comparisons with the FWM analysis of t
wave equation. We will also identify a condition for max
mizing the FWM gain, which is not related to the we
known wave-vector-matching condition, but rather to t
matching of group velocities.

The CW solution of Eq. ~15! has the form A
5E0 exp$iK0

2z/(2k0)% @see Eq.~8! for link betweenK0 and
uE0u2]. To study the stability of this solution we perturb
with a small signal in form~10! and derive the following
quadratic equation fork:

k21~a111a22!k1a11a222a12a2150, ~16!

where

a1152D̂~2d!1K0
2@12~11a!~12d/v0!#/~2k0!,

a1252aK0
2~12d/v0!/~2k0!,

a215aK0
2~11d/v0!/~2k0!,

a225D̂~d!2K0
2@12~11a!~11d/v0!#/~2k0!.

For clarity of interpretation of the instability peaks show
in Fig. 2~b!, let us assume thatu50 and neglect self-
steepening effects. After some algebra, the instability gro
rate can be presented in the form
04660
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2 Imk2

52ImA@D̂~d!1D̂~2d!#@D̂~d!1D̂~2d!1K0
2/k0#,

~17!

where the imaginary part of the square root is fixed to
positive andk1,2 are the two roots of Eq.~16!.

B. Interpretation of the FWM instabilities

Substituting any of the roots of Eq.~16! into Eq.~10! and
calculating the overall wave vectors of the Stokes,kS5k0

1K0
2/(2k0)2Rek, and anti-Stokes,kAS5k01K0

2/(2k0)
1Rek, waves one can see that the phase-matching co
tion for these waves is satisfied automatically under all c
ditions: 2@k01K0

2/(2k0)#[kS1kAS. The condition for the
onset of FWM instabilities is that Rek15Rek2, which is
satisfied throughout the entire instability domain, but not o
side it. Thus the emergence of FWM instabilities implies t
existence of phase synchronism between the two eigen
turbations in Eq.~10!.

The previously introduced parametersk1 and k2 corre-
spond to the wave vectors of two independent, i.e.,
linked by Eqs.~10! and ~11!, waves. Obviously, there ar
good grounds to call them Stokes (2) and anti-Stokes (1)
waves, but this should be done with a degree of caution. T
is because it is easy to confuse them with the previou
introduced Stokes and anti-Stokes waves, which have c
pletely different dispersive characteristics determined by
~13! or ~16!. One can note thatD̂(d)1D̂(2d)5k11k2

22k0[Dkl , whereDkl is the linear mismatch between th
wave vectors. Taking into account that the generation
Stokes and anti-Stokes photons requires two pump phot
one can easily show that the mismatch between the nonli
parts of the wave vectors is given byDknl5K0

2/k0 ~note that
in our notationsDknl is always positive!. One can see tha
condition for the FWM instabilities Rek15Rek2 is satisfied
providing

2Dknl,Dkl,0, ~18!

i.e., Dkl is always negative within the instability domain.
is clear now that FWM instability starts either when th
matching for the full~linear1nonlinear! wave vectors is sat-
isfied, i.e., whenDkl1Dknl50, or when only the linear
parts of the wave vectors are matched, i.e., whenDkl50.

Figure 7 shows regions of FWM instability in th
(d,uE0u2) plane calculated using Eq.~13!. Use of Eq.~16!
leads to almost the same results. In Fig. 7~a! one can see tha
as pump power is increasing, both FWM bands beco
broader until, at some critical power, they merge into a sin
band. The critical power for this merging is probably to
high to have practical relevance in the cw regime. For po
ers even higher, there exists a second threshold when
instabilities disappear@see Fig. 7~b!#. This effect exists also
in the absence of the second FWM peak and becomes
sible due to self-steepening. It is therefore not described
the simplified Eq.~17!; however, it can be predicted by Eq
~16!. Suppression of the instability due to self-steepen
3-5
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was previously described by Potasek@12# for another variant
of the generalized NLS equation.

The gain maxima in the first and second instability ban
@see Figs. 2~b! and 7~a! for E0

2,2500 W] correspond to ze
ros of the derivative of Eq.~17! with respect tod, and can be
found from the condition

Dkl1
1
2 Dknl50. ~19!

This condition shows that, for maximum gain, the line
wave-vector mismatchDkl must be compensated by half th
nonlinear mismatch. It is important to note, that ifDkl is
negative for alld and ]dDkl is also always negative, then
for a given power, condition~19! can be satisfied for one
particular value ofudu only. If, however,]dDkl changes its
sign several times ford.0, then there is always a range
pump powers where condition~19! is satisfied at least twice
For the PCF and TF, one can show that]dDkl changes its
sign once, which ensures the existence of a secondary F
peak@see Fig. 8~a!#. The dispersion of a conventional fibe
see Fig. 1, however, gives a monotonic decay ofDkl with d
@Fig. 8~b!# and therefore only a single FWM peak exists
this case.

From Fig. 8~a! it is clear that condition~19! cannot be
satisfied if the pump power is high enough to makeDknl
.2umindDklu. It is also clear that on approaching this thres
old, the two FWM bands merge into one@see Figs. 7~a! and
8~a!#. However, the instability still exists whenDknl
.2umindDklu. Now, the position of the maximum of th
FWM gain is given by a second condition ensuring that
derivative of Eq.~17! with respect tod is zero, which, as can
be easily shown, is

]Dkl

]d
50. ~20!

Figure 8~a! illustrates that the minimum of the curveDkl
exactly corresponds to the maximum of the gain after
merging of two FWM bands.k0 is obviously does not de
pend ond and therefore condition~20! transforms into

b1uv5v01d2b1uv5v02d50. ~21!

FIG. 7. Level plots of Imk2 showing regions of FWM instabili-
ties in the (d,E0

2) plane calculated using Eq.~13!, for two different
ranges of power, using a pump frequency ofv0/2p5250 THz. ~a!
clearly shows the independence of the secondary FWM peak f
power and the existence of a critical power at which the two pe
merge, while~b! shows the existence of a second critical pow
where all the instabilities disappear.
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Thus the maximum of the gain now happens for values od
where theStokes and anti-Stokes waves have the same g
velocities.

C. Discrepancies between the wave
and generalized NLS equations

Any discrepancies between the predictions of Eqs.~13!
and~16! for Im k2 andR2, at values of detuning correspond
ing to the first FWM peak, are negligible for all releva
parameters. We therefore concentrate our attention on
second FWM peak. Let us first point out that the large valu
of detuning for the second FWM peak can either violate
endanger one of the main assumptions used to derive
generalized NLS equation, namely,udu/v!1. Plotting the
position of the second, i.e., far-detuned, FWM peak a
function of the pump frequency@see Fig. 4~a!#, we find that
the results obtained from Eqs.~13! and ~16! are very close.
This is because the position of the secondary FWM is p
marily determined by the GVD profile of the system, whic
is taken into account by Eq.~15! almost exactly. However
the gain and relative strength of the Stokes and anti-Sto
components for this peak strongly depend on the disper
of the nonlinearity. Because the dependence of the nonlin
ity on d is taken into account by Eq.~15! only approxi-
mately, substantial discrepancies occur between the pre
tions of Eqs.~5! and ~15! for values of Imk2 and R2, see
Figs. 4~b! and 6. Thus Eq.~15! is often insufficient for quan-
titative comparisons between experimental and theoret
results. Let us mention again that Eq.~15! also completely
fails to take into account excitation of the strong forwa
anti-Stokes and weak backward Stokes waves assoc
with the unstable rootk4, see Fig. 2~d!.

D. Role of higher-order dispersion

Figure 9 shows regions of FWM instability in the (d,v0)
plane, calculated using Eq.~13!. Use of Eq.~16! again leads

m
s

r

FIG. 8. ~a! Full lines correspond touIm k2u calculated for the TF
example using Eq.~17!. Pump power is indicated explicitly and th
other parameters are the same as for Fig. 2~b!. Dkl(d) is plotted by
the doted line. Dashed horizontal lines indicate2Dknl/2 for differ-
ent powers. Intersections of the dashed and dotted lines corres
to the positions of the maxima of the FWM gain before mergin
After the merging, maximum of the gain corresponds to the m
mum of Dkl . ~b! Same as~a!, but for the conventional~SMF28!
fiber, see Fig. 1, pumped atv0 /(2p)5250 THz. Note that to make
~a! and ~b! readable we had to scale the plotted values. Imk2 cor-
responding to 3 kW and 7.5 kW were divided, respectively, by
and 20.Dkl ,nl were divided by the factor 200.
3-6
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to very similar results. It is clear that the position of th
second FWM peak is very sensitive to changes in the pu
frequency. For example, this peak is located much close
the pump frequency near to the left-most, i.e., low-frequen
zero GVD point. Looking at Figs. 1 and 10 one can see t
the curvature of theb2(v) plot, i.e., b4, is positive on the
right from the low-frequency zero GVD point, and negati
on the left from the high-frequency zero GVD point, with th
sign change happening aroundv/(2p).370 THz. Neglect-
ing powers ofd higher than four in the expressions forD̂
(6d), one can see that, if bothb2 andb4 are negative, then
Dkl.b2d21 1

12 b4d4 and]dDkl are always negative. There
fore, condition~19! can be satisfied only once, which give
the first FWM peak. A change in the sign of]dDkl and the
existence of the second FWM peak are ensured only by p

FIG. 9. Level plots of Imk2 showing regions of FWM instabili-
ties in the (d,v0) plane, calculated using Eq.~13!, for a pump
power of P5200 W. The two dashed vertical lines mark the ze
GVD points. The unstable regions existing for normal GVD a
centered approximately at 13 THz correspond to the Raman gai
the proximity of the high-frequency zero GVD point there is
region of frequencies in which the far-detuned FWM peaks,
related to the Raman effect, exist even when the fiber is pumpe
the normal GVD region.

FIG. 10. Plots ofb2,4,6 vs v for 1-mm tapered fiber.b2,4,6 are
measured, respectively, in ps2/km, ps4/km, ps6/km.
04660
p
to
y,
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tive (n>6) higher-order dispersion terms. This, howev
requires sufficiently large values ofd, because higher-orde
dispersions are very small. See Fig. 10 for comparison
b2 , b4, andb6.

For these reasons, use of the parabolic approximation
the GVD profile@i.e., fixingv0 at theb2 minimum and using
only b2 andb4 in the expansion forD̂(d)] will fail to pre-
dict correctly the position of the second FWM peak in o
fibers. The theory developed in Ref.@14#, in a different con-
text but also predicting a second FWM peak, uses the p
bolic approximation for the GVD and therefore cannot
directly applied to PCFs and TFs. Let us point out that

In

t
in

FIG. 11. ~a! Im k2, characterizing FWM gain, andR2, charac-
terizing ratio of the intensities of the Stokes and anti-Stokes co
ponents. Dispersion profile was taken as for PCF shown in
1~b!, with v0 /(2p)5250 THz anduE0u2543 W. ~b! Results of the
numerical modeling of Eq.~15!. Parameters are the same as for~a!
and propagation distance is 0.5 m.~c! Same as~b!, but with uE0u2

5200 W.
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BIANCALANA, SKRYABIN, AND RUSSELL PHYSICAL REVIEW E 68, 046603 ~2003!
importance of higher-order dispersion also manifests itse
the fact that FWM gain exists in the finite region of norm
GVD adjacent to the high-frequency zero GVD point—s
Fig. 9. It is important to note that this gain region is inse
sitive to the presence or absence of the Raman gain, w
generates an instability peaking atd.13 THz for anyv0.

E. Numerical modeling of the generalized NLS equation

All the above results, for the dispersion profile of a 1mm
tapered fiber, can be used to characterize the FWM insta
ties for a PCF with dispersion profile shown in Fig. 1. Figu
11~a! shows Imk2 andR2 calculated using Eqs.~15! and~16!
and corresponding to a PCF pumped atv0 /(2p)
5250 THz. Comparing this plot with Figs. 2~b! and 3~a! for
a TF, the main difference is that the detuning of the sec
FWM is larger in the PCF, which is due merely to the fa
that the ratio of the correspondingub4u andub2u is smaller at
this pump frequency. Results of numerical modeling of E
~15!, showing the spectrum of the radiation after 0.5 m
propagation at pump powerE0

2543 W, can be seen in Fig
11~b!. This is in full agreement with analytical predictions
the positions of the FWM peaks and the relative strength
the Stokes and anti-Stokes components@compare Figs. 11~a!
and ~b!#. For higher powers the spectrum of the prima
FWM bands broadens and is Raman shifted towards lo
frequencies. Secondary FWM peaks can still be clearly
served, together with second-order side bands@see Fig.
11~c!#.

V. SUMMARY

We have developed a theory of FWM in ultrasmall co
optical fibers with overall dispersion profiles strongly mod
fied by waveguide dispersion, using tapered and photo
crystal fibers as examples. Our approach avoids use of
traditional slowly varying approximation and relies on ana
sis of the full wave equation. We have predicted the ex
pt
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tence of a secondary FWM peak that does not exist in c
ventional fibers and large-core PCFs, and studied
properties in detail. Existence of this peak and strong dep
dence of its detuning on the pump frequency, together w
the reduced power requirements for the small-core fibers,
potentially lead to the design of new kinds of paramet
amplifiers and oscillators. Let us stress that detuning of
secondary FWM peaks from the pump wave tends to infin
together with the low-frequency zero GVD point shifting
the far ‘‘red’’ part of the spectrum, when the core diameter
the TF or equivalent PCF is increased. This is the prim
reason why the secondary FWM peak has not been repo
in the previously published literature on PCFs, where
low-frequency zero GVD point and the entire part of t
dispersion characteristic with negative slope ofb2(v) were
not present in the practically relevant part of the spectru
see, e.g., Refs.@7–10#.

Comparison of the results obtained from the wave eq
tion with the corresponding results derived from the gen
alized NLS equation reveals a number of deficiencies in
latter. In particular, the NLS fails to predict correctly the ga
and relative strength of the Stokes and anti-Stokes com
nents associated with the secondary FWM peak. It also c
pletely disregards the existence of a pair of additional f
ward anti-Stokes and backward Stokes waves excited by
Raman effect.

We have also shown that under certain conditions posi
of the maximum of FWM gain can be determined not simp
by the wave-vector matching, but by the equality of t
group velocities of the Stokes and anti-Stokes waves.
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